
Fast Pseudorandomness for Independence and
Load Balancing

[Extended Abstract?]

Raghu Meka1, Omer Reingold1, Guy N. Rothblum1, and Ron D. Rothblum2

1 Microsoft Research {meka, omer.reingold}@microsoft.com,
rothblum@alum.mit.edu

2 Weizmann Institute of Science. ron.rothblum@weizmann.ac.il

Abstract. We provide new constructions of several fundamental pseu-
dorandom objects. Loosely speaking, these constructions obtain expo-
nential improvements in efficiency compared to previous constructions
with comparable randomness complexity. Our measure of efficiency is
the number of word operations, as captured by the well-established unit-
cost word RAM model. Our main results are the following:
1. A family of (1/n)-almost logn-wise independent Boolean hash func-

tions withO(logn) description length (or seed length) andO(log log n)
operations per evaluation.
Prior constructions with similar seed lengths required Θ(logn) op-
erations.

2. ε-biased sequences for ε = 1/poly(n) with seed lengthO(logn log logn)
and O((log log n)2) operations (to evaluate an output bit or a block
of up to logn consecutive bits).
Prior constructions achieveO(logn) seed length, but requireΘ(logn)
operations. This construction implies pseudorandom generators with
similar efficiency that fool classes such as low-degree polynomials and
read-once CNFs.

3. Hash functions for placing n balls in n bins such that with all but
probability 1/n the maximal load is O(logn/ log logn) (which is op-
timal), with seed-length O(logn log logn) and O((log log n)2) oper-
ations per evaluation.
The previously known construction with similar seed length required
Θ(logn log log n) operations. Indeed, our construction is an efficient
instantiation of that construction, due to Celis, Reingold, Segev and
Wieder (FOCS 2011).

These constructions are all simultaneously within log logn factors of the
optimal seed length, and within (log logn)2 factors of the optimal com-
putational efficiency.

1 Introduction

Randomness is a valuable resource in the theory and the practice of computing.
Designs of randomized data structures, algorithms, and protocols often assume

? The full version is available on the authors’ homepages.



access to a truly random object, such as a random function or a sequence of
random bits. In many settings, however, these random objects must be replaced
with a succinct and efficiently computable explicit construction that mimics
some of their properties. For example, a pseudorandom bit generator, or a small
family of hash functions.

In this work, we are interested in fast and efficient constructions of pseudo-
random objects. Motivated by applications to data structures and algorithms,
we aim for efficiency in the (unit-cost) word RAM model. This model measures
complexity in terms of word operations, and is a (perhaps the) central model
in the theory and practice of data structure and algorithm design. Applica-
tions aside, the word-RAM complexity of pseudorandom objects is a founda-
tional question, and it has been explored in an important body of work (e.g.
[NN93, Sie04, CRSW13, Tho13]). We focus on three fundamental pseudoran-
dom objects: almost-independent hash functions, small-bias generators, and load
balancing hash functions. Loosely speaking, we obtain exponential efficiency im-
provements compared to the fastest known constructions for each of these ob-
jects, while maintaining (up to log log factors) the best seed length. We proceed
with an overview of our contributions and their relationship to prior works. A
more detailed discussion of the RAM model follows. We note that these results
have already found applications in subsequent recent works of Reingold, Roth-
blum and Weider [RRW14] and of Reingold and Vardi [RV14].

Limited Independence. Families of hash functions with limited independence are
central objects in the study of hashing and derandomization, and have many
applications to algorithms and data structures. Limited independence suffices
in many cases where fully random hash functions are used, and functions with
limited independence have the advantage of a much more succinct and space-
efficient representation. A hash family is said to be ε-almost k-wise independent
if for any k fixed inputs, their (joint) output distribution is ε-close to uniform (in
statistical distance, where the probability is over the choice of a function from
the family). The use of limited independence in computer science begins with
the seminal work of Carter and Wegman [CW79, WC81]. See also the survey of
Luby and Wigderson [LW05].

A particularly interesting parameter choice is that of (1/poly(n))-almost
log n-wise independent Boolean hash functions, which lend themselves to show-
ing concentration bounds with polynomially small errors. For this setting of
parameters, known constructions achieve optimal seed length of O(log n) bits
[NN93], but computing these functions is expensive, and requires O(log n) word
operations (where the word length is O(log n)). Alternatively, Siegel [Sie04] and
Thorup [Tho13] propose functions with nΩ(1)-independence that can be eval-
uated in a constant number of word operations, but use storage or key length
nΩ(1) (for functions with constant evaluation time, larger key length or storage is
essential, even for logarithmic output length and independence, by Siegel’s lower
bound [Sie04]). Our first result is a new construction of Boolean hash functions
with logarithmic seed length/storage and fast evaluation.



Construction 1 (Fast Almost Independent Hash Family) We construct
a family of (1/poly(n))-almost log n-wise independent functions from {0, 1}w
to {0, 1}, with a O(log n)-bit seed, which can be evaluated in O(log log n) word
operations.

Moreover, for any m ∈ [log n], we construct a (1/poly(n))-almost ((log n)/m)-
wise independent family of hash functions from {0, 1}w to {0, 1}m, with a O(log n)-
bit seed, which can be evaluated in O(log log n) operations.

This construction follows from a new fast small-bias generator described be-
low. It achieves an exponential efficiency improvement over past work, while still
having optimal seed length / storage (up to constant factors). Moreover, it also
allows fast computation of m-bit outputs: as the output size increases to m > 1
bits, the independence guarantee decreases proportionally to (log n)/m.

It is interesting to compare our upper bound with the lower bound of Siegel
[Sie04] for computing k-wise independent hash functions. Siegel’s seminal cell-
probe lower bound shows that when hashing from a universe of size n to a
range of size 2m with m-bit long cells, to get k-wise independent hash functions
that can be evaluated in time t < k (t here is the number of cell probes), one
needs storage or key length Ω(k · n1/t) (this is the length of the hash key that
allows computation in t cell probes). Adapted to the RAM model, Siegel’s lower
bound says that to get log n-wise independent hash functions with log n output
length, even using logγ n time, requires large Ω(2log

1−γ n) storage. In contrast,
we focus on Boolean functions, and obtain both logarithmic seed length/storage
and O(log log n) time.

Small-Bias Generators. A pseudorandom generator maps a short random seed
into a longer output that is indistinguishable from the uniform distribution to
a certain class of tests (or distinguishers). A small-bias generator is one that
“fools” linear tests. Namely, G is an ε-biased generator if for every non-zero test
vector t, it holds that:

Pr
seed

[〈t, G(seed)〉 = 0] ∈ [1/2− ε, 1/2 + ε] (1.1)

(the inner product is taken over GF(2)). The notion of ε-biased generators was
introduced by the seminal work of [NN93], who also gave the first construc-
tions of such generators. Since then, a rich sequence of works provided alterna-
tive constructions and related notions [AGHP92, AIK+90, RSW93], [AMN98,
EGL+98, AM95, BATS13]. Small-bias generators have found numerous applica-
tions throughout theoretical computer science, from derandomization [NN93], to
learning theory [AM95], to efficient low-degree tests and short PCPs [BFLS91,
FGL+96, BSGH+06]. In coding theoretic terms, they are equivalent to linear
error correcting codes over GF(2) where all codewords have relative Hamming
weight between (1−ε)/2 and (1+ε)/2 [NN93, AGHP92]. They are also an impor-
tant tool in finding explicit constructions, e.g. for graphs [Nao92, AR94, MW04],
two-source extractors [Raz05], and psuedorandom generators that fool low de-
gree polynomials [BV10, Lov09, Vio09] or Read-Once CNFs [GMR+12], and
many more.



One especially important motivation for the study of small-bias generators,
is their application to the construction of almost k-wise independent hash func-
tions. For this application, [NN93] introduced the relaxed notion of (k, ε)-biased
generators, which are only required to fool linear tests of weight at most k (i.e.
vectors with at most k non-zero coordinates). Any (k, ε)-biased generator im-
mediately implies an (ε · 2k/2)-almost k-wise independent Boolean hash family.
Thus, to construct good almost k-wise independent hash functions, we need
a (k, ε)-biased generator with bias smaller than 2−k/2. Indeed, Construction 1
above is obtained by building a new fast (log n,poly(1/n))-biased generator,
whose output bits (and blocks) can be computed in few word operations.

Known constructions of ε-biased generators achieve asymptotically optimal
seed length of O(log(n/ε)) up to constant factors, [NN93, AGHP92]. Moreover,
[NN93] gave a generator with constant bias, where each of the output bits could
be computed using O(1) word operations. However, for smaller biases, e.g. bias
poly(1/n) (which is necessary for obtaining almost log n-wise independent hash
functions), known construction are not nearly so efficient. In particular, they
require O(log n) word operations for computing each output bit. This is true
even for the relaxed requirement of (log n, ε)-bias.

Construction 2 (ε-Biased Generator) We construct a (1/poly(n))-biased gen-
erator G with seed length O(log n log log n), where each bit of G’s output can be
computed in O((log log n)2) word operations.

Construction 2 gives an exponential efficiency improvement over prior con-
structions, at the cost of a log log n blowup in the seed length. This is our most
technically elaborate construction. It utilizes almost log n-wise independent hash
families (see above), and load balancing hash families (see below).

Significant attention has been devoted to the circuit or arithmetic complex-
ity of computing ε-biased generators, yielding generators computable in circuit
classes such as NC0, AC0[⊕], or low-degree polynomials [CM01, GV04, AIK06,
MST06, HV06, Hea08, Shp09]. These works, like ours, contend with the funda-
mental question of efficiently computing pseudorandom objects. Our work, how-
ever, focuses on complexity in terms of running time in the word-RAM model,
a very different model (which is arguably more relevant for many applications
and prevalent architectures). Indeed, as noted above, the original work of Naor
and Naor [NN93] also considered the word-RAM model (see above). Another dif-
ference is in showing that word RAM running-time measure allows for efficient
constructions of a rich variety of pseudorandom objects. This is not the case if
we restrict locality or algebraic degree: for example, no generator of constant
degree or locality can have super-polynomial stretch [MST06].

Given the ubiquitous nature of ε-biased generators and almost k-wise inde-
pendent hash functions, we get similar improvements for several constructions
(see the full version for details):

– Efficient Pseudorandom Generators (PRGs) for low-degree polynomials over
GF(2): The works of [BV10, Lov09, Vio09] show that sum of small-bias



generators fool low-degree polynomials over GF(2). As a result we get very
efficient PRGs for this well-studied class of test functions.

– Efficient PRGs for Read-Once CNFs: The work of [GMR+12] uses small-bias
generators to fool read-once CNFs and hence we get very efficient PRGs for
read-once CNFs.

Load Balancing. A fundamental fact in the analysis of randomized algorithms
is that if n items are hashed into n bins, using a truly random hash function,
then with high probability each bin contains at most O(log n/ log logn) items.
It is natural to try and construct succinct explicit functions that share this
important property. It is known that O(log n/ log log n)-wise independent hash
families (with log n output bits) have this property, but these require a large
O(log2 n/ log log n)-bit seed, and evaluation takes O(log n/ log log n) word op-
erations. Until recently no constructions with smaller seed length were known
(variants of this question were posed in [ADM+99, PPR07]). In recent work, Celis
et al. [CRSW13] construct a family with seed length O(log n log log n), obtaining
the first improvement over the seed length of a generic log n-wise independent
hash family. That construction did not improve the evaluation time, but they
also present a second construction, which supports evaluation in

√
log n opera-

tions. While the seed length of this second construction increased to log3/2 n, it
was the first construction with a sub-polynomial seed that beat the evaluation
time of O(log n). Indeed, in light of Siegel’s lower bound [Sie04], this second
construction gives a separation between the number of operations needed to
compute load balancing and log n-wise independence.

In this work we obtain an exponential efficiency improvement (even with
respect to the second construction of [CRSW13]), while maintaining the best
known seed length (that of their first construction).

Construction 3 (Load-Balancing Hash Family) We construct a family of
load-balancing hash functions with seed length O(log n log log n), which can be
evaluated in O((log log n)2) word operations.

In fact, this is an instantiation of the [CRSW13] construction, using the
fast almost-independent hash functions of Construction 1. The efficient block
computation property of Construction 1 is essential for this instantiation.

The Unit-Cost Word RAM Model. Throughout this work, we consider the unit-
cost Word RAM model in which the elements are taken from a universe of size
u, and each element can be stored in a single word of length w = O(log u) bits.
Throughout this work we take the universe size to be poly(n) and the word
length to be O(log n) (the standard setting of parameters).

The unit cost RAM model has been the subject of much research, and is
considered the standard model for analyzing the efficiency of data structures
and hashing schemes; see, e.g., [DP08, Hag98, HMP01, Mil99, PP08] and the
references therein. In this model, it is assumed that a certain set of operations
on words come at unit cost (an abstraction for the set of instructions supported



by a CPU). This set of supported operations is an important part of the model,
both from a practical and from a foundational point of view. Indeed, for a given
algorithm, its running time may vary greatly depending on the set of unit-cost
operations. We aim for a “minimal” model, and assume that the following (stan-
dard) operations can be executed in constant time on w-bit operands: bitwise
Boolean operations, parity, left and right bit shifts by an arbitrary number of
positions. We also assume constant-time addition, subtraction and multiplica-
tion over finite fields (we refer to these as field operations throughout). Our main
results are stated assuming support for field operations over GF(2w). Our con-
structions can also be instantiated over prime fields GF(p) (using addition and
multiplication only), at the cost of an additional O(log log n)-overhead. See the
full version for details on results over GF(p).

We elaborate on these two variants of supported field operations. Addition
and subtraction over any finite field, and multiplication over a prime field GF(p),
are all standard operations. Multiplication over GF(2w), which requires taking
the polynomial product modulo an irreducible polynomial, is used in a wide
range of applications (and implementations) including error correcting codes
[RS60, LRPP09, RCL+13] and cryptography [oSN01, Dwo07]. Notably, modern
processors provide (partial) support for multiplication over binary fields [GK12].

We avoid more complex (and non-standard) field operations such as division,
inversion, or exponentiation, which are considered to be expensive operations
(see, e.g., [Ram96], [And96] for two works working in the unit-cost Word RAM
model where special care is taken to avoid division). We note, however, that
if we allow such powerful unit-cost operations, then simpler and more efficient
solutions are known. For example, if we allow unit-cost exponentiation, then
the “powering construction” of [AGHP92] is a poly(1/n)-biased generator that
can be evaluated in O(1) time. A construction obtaining a poly(1/n)-biased
generator with O(log n) seed length, using O(1) divisions, was communicated to
us by Zuckerman [Zuc].

1.1 Overview of Constructions and Techniques

Our constructions combine both algebraic as well as combinatorial techniques
from the works of Naor and Naor [NN93] and Alon et al. [AGHP92], in ad-
dition to employing the load-balancing hash function construction of to Celis
et al. [CRSW13]. We start by constructing (almost) O(log n)-wise independent
Boolean hash functions, which can be used to construct hash functions for load
balancing. We then combine the two constructions (O(log n)-wise independence
and load balancing) to construct poly(1/n)-biased sequences. Thus, the O(log n)-
wise independent family is used both directly, and as part of the load balancing
construction. In other words, our construction can be viewed as going from ε-
bias (against logarithmically sparse tests) to load balancing, and back again to
(full-fledged) ε-bias.

Looking further “under the hood”, the starting point of our construction of
O(log n)-wise independence is one of the ε-bias constructions from [AGHP92].
In this respect, our construction can be viewed as transforming a (not efficient
enough) ε-biased generator to a more efficient O(log n)-wise independent hash



family, and back again to a (still efficient) ε-biased generator. (See the full version
for an elaboration on this perspective.)

We proceed with a more detailed overview of constructions and techniques.
We begin with our construction of O(log n)-wise independence directly. As men-
tioned above, (almost) log n-wise independence follows from fooling (logarithmi-
cally) sparse linear tests.

(k, ε)-Biased Generator. We wish to construct a generatorG which fools k-sparse
linear tests in the sense of satisfying Eq. (1.1) for vectors t which have at most
k non-zero coordinates. For m = O(k + log(n/ε)), the generator G stretches a
2m-bit seed3 to nm bits (alternatively, to n blocks of m output bits), where each
m-bit output block can be computed very efficiently. The construction uses the
field GF(2m).4 The generator’s seed consists of two field elements β, γ ∈ GF(2m),
and it outputs n field elements, or nm bits in total. We index these output
elements using an arbitrary subset A ⊆ GF(2m) of size n. For α ∈ A, the α-th
output element is:

(G(β, γ))α
def
= γ ·

k−1∑
i=0

(αβ)i, (1.2)

and we treat each of these field elements as an m-bit block.

Fast Bit and Block Computation. The main advantage of this construction is that
the α-th block can be computed very efficiently, in O(log k) word operations (and
so can each individual output bit). The efficient computation procedure uses the
equality:

(G(β, γ))α = γ ·
k−1∑
i=0

(αβ)i = γ · (1 + (αβ)) ·
k
2−1∑
i=0

((αβ)2)i

= γ · (1 + (αβ)) · (1 + (αβ)2) ·
k
4−1∑
i=0

((αβ)4)i = . . . = γ ·
log k−1∏
j=0

(1 + (αβ)2
j

)

(w.l.o.g. we take k to be a power of 2)5. This final product can be computed
using O(log k) operations on m-bit words: 2 log k + 1 multiplications and log k
additions.

3 If either k = Ω(logn) or n is polynomial in 1/ε then the seed-length is optimal up
to a constant factor. In general, though, the optimal dependence of the seed on n is
additive log logn. See the full version for details.

4 The construction can be revised, using a transformation due to Rao [Rao07], to use
instead the field GF(p) for some prime p. This incurs a log logn overhead in both
efficiency and seed length. See the full version for more details. As this generator is
the main building block we use, all other constructions in the paper can similarly be
made to work with operations over GF(p).

5 We can also write G(β, γ) = γ ·((αβ)k+1−1))/(αβ−1) and compute it using O(log k)
multiplications and one division. Here we try to avoid using divisions.



One parameter range of particular interest is a (log n, poly(1/n))-biased gen-
erator. For this setting of parameters, each output block is of length O(log n), and
can be computed using O(log log n) word operations (on (log n)-bit words). As
discussed above, this generator immediately yields a poly(1/n)-almost log n-wise
independent Boolean hash family, where the hash functions can be evaluated in
O(log log n) time.

Proof of Pseudorandomness. We would like to prove that G is a (k, ε)-biased
generator. Namely that G produces a distribution over nm-bit strings that fools
k-sparse linear tests over GF(2). Towards this, we first show that when viewing
the output of G as n field elements of GF(2m), it fools any k-sparse linear
test over GF(2m). We then prove that every (k, ε)-biased generator for tests
over GF(2m) remains (k, ε)-biased when we interpret its output as bits. This is
proven by showing that a k-sparse linear test over GF(2) can be “simulated” by
a k-sparse linear test over GF(2m).

The direct proof that G is a (k, ε)-biased generator is fairly simple. Still we
describe the way we obtained the construction, as we hope that this approach
may find further applications. Our starting point is an ε-biased generator due to
[AGHP92] (slightly modified to generate ε-biased sequences over GF(2m) rather
than over GF(2)). By itself, the generator is not efficient enough (as most output
elements require Ω(log n) operations to evaluate). To improve construction’s
efficiency, we use a reduction due to [NN93] from ε-bias to (k, ε)-bias. This
reduction is used in [NN93] to reduce the seed length.6 Our goal is quite different:
we will use the reduction to improve efficiency, obtaining (k, ε)-biased sequences
that require log k operations (rather than log n). A priori, there is no reason to
expect the reduction to have this consequence, but a careful instantiation of the
reduction does work.

Almost k-Wise Independence and Load Balancing. The (log n,poly(1/n))-biased
generator obtained above directly implies a poly(1/n)-almost log n-wise inde-
pendent Boolean hash family, where functions in the family can be evaluated
in O(log log n) word operations. Moreover, because of the efficient block compu-
tation property, for every t ∈ {1, 2, 3, . . . log n}, we also get a poly(1/n)-almost
(log n/t)-wise independent hash family from [n] to {0, 1}t, where the functions
can be evaluated in O(log log n) word operations (we emphasize that this is the
cost to obtain all of the output bits simultaneously). For every such t, a hash
function h is described by two GF (2m) elements β and γ and hβ,γ(i) is defined
to be the t-long suffix of G(β, γ))αi , where αi is the i’th field element in A.

Such almost k-wise independent functions are used in [CRSW13] to construct
load-balancing hash functions. The [CRSW13] construction uses log log n such
hash functions (each of these hash functions is evaluated once). The w-th func-
tion, for w ∈ [log logn], is taken from a family that is (almost) O(log n/2w)-wise
independent with 2w-bit outputs. We instantiate their construction with our new

6 More specifically, the dependence on n in the seed of (k, ε)-biased sequences is better
than the dependence for ε-bias sequences.



hash families, improving the evaluation time from Õ(log n) to O((log log n)2)
word operations. The seed length remains O(log n · log log n).

(Full-Fledged) ε-Biased Generator. Having used a (log n,poly(1/n))-biased gen-
erator to obtain fast load-balancing, we now use fast load-balancing (together
with the (log n, poly(1/n))-biased generator again) to obtain a fast full-fledged
ε-biased generator (for all tests, i.e. without any sparsity restriction). This part
of our construction is inspired by the combinatorial techniques of [NN93]. Spe-
cial care is needed to simultaneously preserve both the small error as well as
the efficient computation. To handle this we introduce a stronger notion of load
balancing we call “granular” load balancing, which may be of interest elsewhere.
See the full version for details.

1/poly(n)-biased generator
logn operations [AGHP92]

(logn, 1/poly(n))-biased generator
log logn operations

Load balancing hashing
(log logn)2 operations

1/poly(n)-biased generator
(log log n)2 operations

Fig. 1. Roadmap for the construction of the fast ε-biased generator.

Acknowledgments. We would like to thank Udi Wieder and Moni Naor for useful
discussions.

References

ADM+99. Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank, and
Gábor Tardos. Linear hash functions. J. ACM, 46(5):667–683, 1999.

AGHP92. Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple con-
struction of almost k-wise independent random variables. Random Struct.
Algorithms, 3(3):289–304, 1992.



AIK+90. Miklós Ajtai, Henryk Iwaniec, János Komlós, János Pintz, and Endre Sze-
merédi. Construction of a thin set with small Fourier coefficients. Bulletin
of the London Mathematical Society, 22:583–590, 1990.

AIK06. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in

NC0. SIAM J. Comput., 36(4):845–888, 2006.
AM95. Noga Alon and Yishay Mansour. epsilon-discrepancy sets and their applica-

tion for interpolation of sparse polynomials. Inf. Process. Lett., 54(6):337–
342, 1995.

AMN98. Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability
distributions using small sample spaces. Combinatorica, 18(2):151–171,
1998.

And96. A. Andersson. Faster deterministic sorting and searching in linear space.
In FOCS, pages 135–144, 1996.

AR94. Noga Alon and Yuval Roichman. Random Cayley graphs and expanders.
Random Struct. Algorithms, 5(2):271–285, 1994.

BATS13. Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets
from algebraic-geometric codes. Theory of Computing, 9:253–272, 2013.

BFLS91. László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Check-
ing computations in polylogarithmic time. In STOC, pages 21–31, 1991.

BSGH+06. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil P. Vadhan. Robust PCPs of proximity, shorter PCPs, and applications
to coding. SIAM J. Comput., 36(4):889–974, 2006.

BV10. Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomi-
als. SIAM J. Comput., 39(6):2464–2486, 2010.

CM01. Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in
NC. In MFCS, pages 272–284, 2001.

CRSW13. L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins:
Smaller hash families and faster evaluation. SIAM J. Comput., 42(3):1030–
1050, 2013.

CW79. Larry Carter and Mark N. Wegman. Universal classes of hash functions.
J. Comput. Syst. Sci., 18(2):143–154, 1979.

DP08. Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for re-
trieval and approximate membership (extended abstract). In ICALP (1),
pages 385–396, 2008.

Dwo07. Morris Dworkin. Recommendations for Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D,
2007.

EGL+98. Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velick-
ovic. Efficient approximation of product distributions. Random Struct.
Algorithms, 13(1):1–16, 1998.

FGL+96. Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Interactive proofs and the hardness of approximating cliques. J.
ACM, 43(2):268–292, 1996.

GK12. Shay Gueron and Michael E. Kounavis. Intel R© carry-less multiplication
instruction and its usage for computing the GCM mode, rev 2.01, 2012.

GMR+12. Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and
Salil P. Vadhan. Better pseudorandom generators from milder pseudo-
random restrictions. In FOCS, pages 120–129, 2012.

GV04. Dan Gutfreund and Emanuele Viola. Fooling parity tests with parity gates.
In APPROX-RANDOM, pages 381–392, 2004.



Hag98. Torben Hagerup. Sorting and searching on the word RAM. In STACS,
pages 366–398, 1998.

Hea08. Alexander Healy. Randomness-efficient sampling within nc1. Computa-
tional Complexity, 17(1):3–37, 2008.

HMP01. Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic
dictionaries. J. Algorithms, 41(1):69–85, 2001.

HV06. Alexander Healy and Emanuele Viola. Constant-depth circuits for arith-
metic in finite fields of characteristic two. In STACS, pages 672–683, 2006.

LN97. R. Lidl and H. Niederreiter. Finite Fields. Number 20 in Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1997.

Lov09. Shachar Lovett. Unconditional pseudorandom generators for low degree
polynomials. Theory of Computing, 5(1):69–82, 2009.

LRPP09. J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo. Reed-Solomon Forward
Error Correction (FEC) Schemes. RFC 5510 (Proposed Standard), April
2009.

LW05. Michael Luby and Avi Wigderson. Pairwise independence and derandom-
ization. Foundations and Trends in Theoretical Computer Science, 1(4),
2005.

Mil99. Peter Bro Miltersen. Cell probe complexity - a survey. In In 19th Confer-
ence on the Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), 1999. Advances in Data Structures Workshop, 1999.

MST06. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased

generators in NC0. Random Struct. Algorithms, 29(1):56–81, 2006.
MW04. Roy Meshulam and Avi Wigderson. Expanders in group algebras. Combi-

natorica, 24(4):659–680, 2004.
Nao92. Moni Naor. Constructing Ramsey graphs from small probability spaces.

IMB Research Report, RJ(8810), 1992.
NN93. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-

structions and applications. SIAM J. Comput., 22(4):838–856, 1993.
oSN01. National Institute of Standards and Technology (NIST). Federal informa-

tion processing standards publication (FIPS 197). Advanced Encryption
Standard (AES), 2001.

PP08. Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and
optimal space. SIAM J. Comput., 38(1):85–96, 2008.

PPR07. Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with constant
independence. In STOC, pages 318–327, 2007.

Ram96. Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous.
In ESA, pages 121–137, 1996.

Rao07. Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic
Colloquium on Computational Complexity (ECCC), 14(034), 2007.

Raz05. Ran Raz. Extractors with weak random seeds. In STOC, pages 11–20,
2005.

RCL+13. V. Roca, M. Cunche, J. Lacan, A. Bouabdallah, and K. Matsuzono. Simple
Reed-Solomon Forward Error Correction (FEC) Scheme for FECFRAME.
RFC 6865 (Proposed Standard), February 2013.

RRW14. Omer Reingold, Ron D. Rothblum, and Udi Wieder. Pseudorandom graphs
in data structures. Manuscript, 2014.

RS60. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.



RSW93. Alexander A. Razborov, Endre Szemerédi, and Avi Wigderson. Construct-
ing small sets that are uniform in arithmetic progressions. Combinatorics,
Probability & Computing, 2:513–518, 1993.

RV14. Omer Reingold and Shai Vardi. Tighter bounds for local computations.
Manuscript, 2014.

Shp09. Amir Shpilka. Constructions of low-degree and error-correcting epsilon-
biased generators. Computational Complexity, 18(4):495–525, 2009.

Sie04. Alan Siegel. On universal classes of extremely random constant-time hash
functions. SIAM J. Comput., 33(3):505–543, 2004.

Tho13. Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and
high independence. In FOCS, 2013.

Tzu09. Yoav Tzur. Notions of weak pseudorandomness and GF (2n)-polynomials.
Master’s thesis, Weizmann Institute of Science, 2009. Available at http:

//www.wisdom.weizmann.ac.il/~odedg/msc-yt.html.
Vio09. Emanuele Viola. The sum of d small-bias generators fools polynomials of

degree d. Computational Complexity, 18(2):209–217, 2009.
WC81. Mark N. Wegman and Larry Carter. New hash functions and their use

in authentication and set equality. J. Comput. Syst. Sci., 22(3):265–279,
1981.

Zuc. David Zuckerman. Personal Communication.

http://www.wisdom.weizmann.ac.il/~odedg/msc-yt.html
http://www.wisdom.weizmann.ac.il/~odedg/msc-yt.html

	Fast Pseudorandomness for Independence and Load Balancing

